Subject: Re: Math Question \#1

Posted by archerman on Tue, 11 Nov 2008 11:08:33 GMT
View Forum Message <> Reply to Message
nopol10 wrote on Tue, 11 November 2008 11:38Actually, $\lim (5 / x, x, 0)$ (Limit of $5 / x$ as $x->0$) is not infinity as limit of $5 / x$ as $x \rightarrow 0$ from the negative side and the limit of $5 / x$ as $x \rightarrow 0$ from the positive side are not equal. Therefore the limit is undefined. It is infinity only when $x \rightarrow 0$ from the positive side and negative infinity when $x->0$ from the negative side.
you are right. the graph of $y=5 / x$ is similar to $y=1 / x$ which is like:
so limit doesn't exist.

File Attachments

1) loverx.gif, downloaded 750 times

2) solution.JPG, downloaded 453 times
$\lim _{x \rightarrow 0} \frac{\sin 5 x}{2-2 \cos x}$
$\lim _{x \rightarrow 0} \frac{\sin 5 x}{2(1-\cos x)} \quad \begin{gathered}\cos x=1-2 \sin ^{\prime} 2(x / 2) \\ 1-\cos x=2 \sin ^{\wedge} 2(x / 2)\end{gathered}$
$\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 \sin ^{\wedge} 2(x) 2} \quad$ (eqn. 1)
$x-=04 \sin ^{\prime} 2(x / 2)$
$\lim \frac{\frac{5 \sin 5 x}{5 x}}{5}$
(when simplified, we have eqn.1)
$x \rightarrow 0 \quad \sin ^{\wedge} 2(x / 2) x$
$(x / 2)^{\wedge} 2$
$\lim _{x \rightarrow 0} \frac{5}{x}$
for $0-$ limit is at - infinity
for $0+$ limitit is at + infinity \Rightarrow limit doesnt exist.
